

Comparison of the *EUPOS*[®] countries network RTK quality

<u>Karol Smolík</u>, Dr. Branislav Droščák

Geodetic and Cartographic Institute BRATISLAVA

karol.smolik@skgeodesy.sk, branislav,droscak@skgeodesy.sk

EUREF 2016 annual symposium May 25-27 2016, San Sebastian, Spain

- EUPOS = international initiative established in 2002
- Members: mostly CEE
- Goals:
 - Act as a European-wide DGNSS service providers branch organization
 - Collaborate with international organizations and bodies to represent European DGNSS service providers
 - Collaborate with scientific institutions and promote scientific use of EUPOS data

12 member countries (after revision in 2014)

Uniform standards and Guidelines

- EUPOS Terms of Reference
- EUPOS Technical Standards
- EUPOS Guideline for Single Site Design
- EUPOS Guideline for Cross-Border Data Exchange

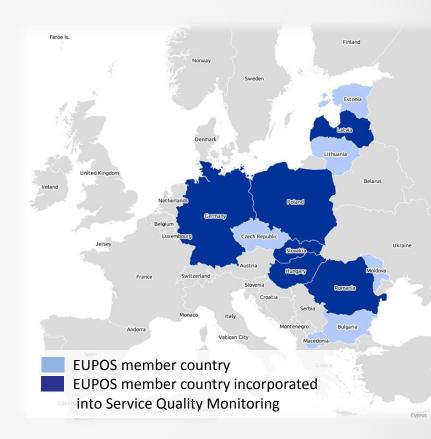
EUPOS WG on Service Quality Monitoring

- Established by the resolution 25.5 of the 25th Conference of the EUPOS Steering committee which was held in Riga
- Aims:
 - creation of the uniform common network RTK quality monitoring tool based on virtual monitoring stations for all EUPOS member countries
 - set it up and do analysis on outputs
 - implementation into EUPOS TS

RESOLUTION 25.5 OF THE 25TH CONFERENCE OF THE EUPOS STEERING COMMITTEE OF MAY 6-7, 2014 IN RIGA, LATVIA; AGENDA ITEM NO. 14.1: SKPOS (EUPOS) NETWORK SOLUTION MONITORING APPLICATION.

The EUPOS International Steering Committee (ISC),

noting the importance of the EUPOS service quality monitoring,


appreciating the development of an early tool for the quality monitoring of the EUPOS Network RTK service that could supplement the necessity to implement physical monitoring stations into the GNSS reference stations network,

decides to create a EUPOS Working Group on Service Quality Monitoring and

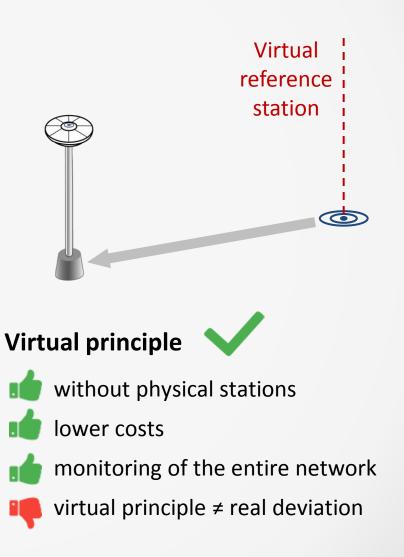
requests Dr Branislav Droscak to chair this Working Group.

EUPOS WG on Service Quality Monitoring

- Working group
 - Branislav Droščák chair
 - Karol Smolík
- Cooperators
 - Szymon Wajda (Poland) ASG-EUPOS
 - István Galambos (Hungary) gnssnet.hu
 - Vlad Sorta (Romania) ROMPOS
 - Christian Trautvetter (Germany) SAPOS
 - Ivars Degainis (Latvia) EUPOS-RIGA

Monitoring of network solution

CORS monitoring


- time series monitoring
- multipath performance analysis
- monument stability
- quality check of GNSS observations

Monitoring of network solution (service)

Monitoring of network solution

Physical monitoring solutions

real value of deviations

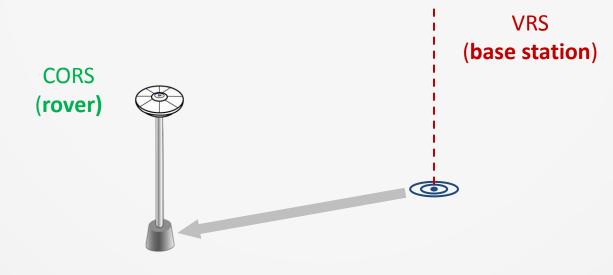
high costs

the inability to monitor the entire network

EUPOS service quality monitoring Principle

Concept copies the design of $SKPOS^{\mathbb{R}}$ network solution quality monitoring application

Monitoring independent from the GNSS service provider control software



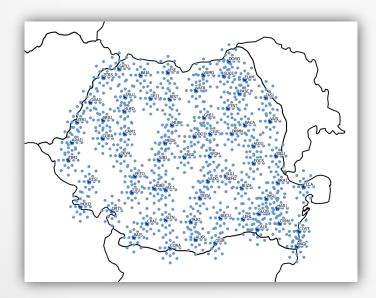
Fully automatic solution

Virtual solution (no real monitor stations)

EUPOS service quality monitoring Principle

Monitoring of the whole territory of countries

Random generation of (virtual) test points

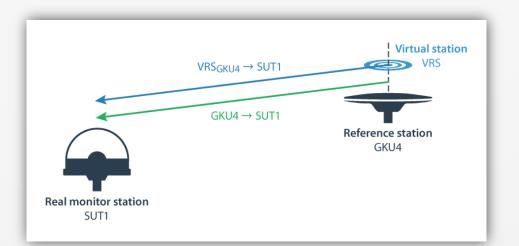


Baseline processing by open source RTKNAVI software

Results available via web/mobile application

Accuracy verification and evaluation of the virtual monitoring reliability

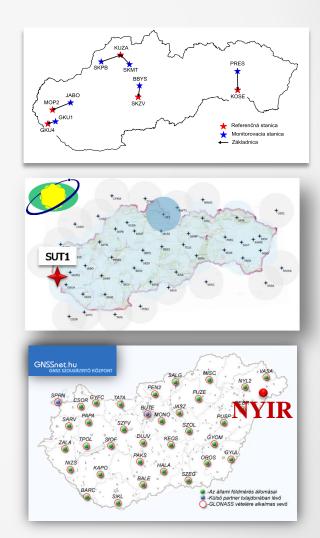
Hypothesis :


virtual principle = real measurement

Test:

Computation two baselines in a same time:

- 1. baseline composed of VRS (generated for reference station coordinates) and real monitor station
- 2. baseline composed of reference station and real monitor station


Accuracy verification and evaluation of the virtual monitoring reliability

Test 1

- 6 monitor station in Slovakia
- Test took: 5 days
- Baselines length: 20 m 32 km

Test 2

- 1 monitor station in Slovakia
- Test took: 5 months
- Baselines length: 4 km
- Test 3
 - 1 monitor station in Hungary
 - Test took: 37 days
 - Comparison one time per hour

Accuracy verification and evaluation of the virtual monitoring reliability

Test	Deselies	Number	Deviations			
Test	Baseline	of values	n	е	u	
Test 1	GKU1 – GKU4 JABO – MOP2 BBYS – SKZV SKPB – KUZA PRES – KOSE SKMT – KUZA	777	0.4 cm	0.3 cm	0.5 cm	
Test 2	GKU4 – SUT1	41 334	0.6 cm	0.4 cm	1.0 cm	
Test 3	VRS – NYIR	720	0.6 cm	0.6 cm	1.8 cm	
			- d	coincidence	!	

Very good coinciden

EUPOS service quality monitoring Status (May 2016)

34 stations

32 stations

8 stations

68 stations

4 stations

5 stations

152 stations

Javad

GNSS receiver manufacturers

- Trimble
 - Leica 🛛 Astech
- Topcon

Network softwares:

- Trimble Pivot Platform
- Geo++ GNSMART
- Leica Spider

EUPOS networks deviations comparison Statistics

RTK network		SKPOS ®	ASG. eupos	GNSSnet.hu GNSS SZOLGÁLTRTÓ KÖZPONT	ROMP S	SAPOS®		EUP S
Software		Trimble Pivot Platform	Trimble Pivot Platform	Geo++ GNSMART	Leica Spider	Trimble Pivot Platform	Geo++ GNSMART	Σ
Time peri	od	2013-07-01 - 2016-04-30 (1 034 days)	2014-07-26 - 2016-04-30 (644 days)	2014-10-30 - 2016-04-30 (548 days)	2014-12-05 - 2016-04-30 (512 days)	2015-07-03 - 2016-04-30 (302 days)	2015-10-19 – 2016-04-30 (194 days)	
Number of monitored stations		34	34	7	68	4	5	152
Number of values		751 139	310 745	92 238	726 643	20 522	23 879	1 925 166
Maximal	ne	49.9 cm	44.6 cm	42.4 cm	49.7 cm	13.0 cm	28.6 cm	$\sim 10^{\circ} \leq 2 \text{ cm}$
IvidXIIIIdi	u	49.8 cm	48.7 cm	47.6 cm	49.9 cm	39.2 cm	28.6 cm 49.3 cm HZ EUPO	RMS Confirmed
Average	ne	1.1 cm	1.0 cm	1.3 cm	1.3 cm	0.9 cm	1.0 cm	1.1 cm
Average	u	2.4 cm	1.2 cm	1.4 cm	2.6 cm	1.3 cm	1.9 cm	1.8 cm
No fix		16%	8%	17%	18%	10%	25%	16%

Service quality monitoring Not only for determination of deviations

- Archived results can serve for different analysis and can reveal interesting connections and experience
- Analyzes of deviations according to:
 - GNSS service provider control software
 - reference stations density
 - dependency on high ionosphere (day/night deviation comparison)
 - testing points extrapolation (on RIGA-EUPOS network)
 - type of receiver
 - dependency on position

Analyzes of deviations according to GNSS service provider control software

RTK network		SKPOS					
Software		Trimble Pivot Platform	Geo++ GNSMART	Leica Spider			
Number of monitored stations		72	12	68			
Number of va	alues	1 082 406	116 117	726 643			
B A sector al	ne	49.9 cm	42.4 cm	49.7 cm			
Maximal	u	49.8 cm	49.3 cm	49.9 cm			
A	ne	1.0 cm	1.2 cm	1.3 cm			
Average u		1.6 cm	1.7 cm	2.6 cm			
No fix		11%	21%	18%			
	No fix 11% 21% 18% Only slight differences! 18%						

Analyzes of deviations according to reference stations density

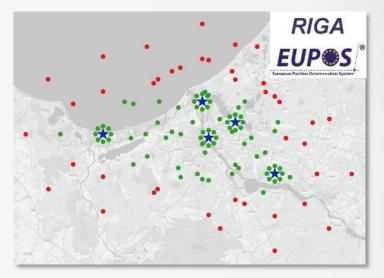
- Density means: one station per xy km²
- Density values get from fraction: country area/number of CORS

RTK network		RIGA EUP®S	SKPOS [®]		
Density		< 1000 km ²	1000 km² – 2000 km²	> 2000 km ²	
Number of monitored st	ations	5	38	109	
A	ne	1.1 cm	1.0 cm	1.2 cm	
Average	u	1.9 cm	1.9 cm	1.7 cm	
No fix		25%	13%	14%	
			t confirmed!		

Assumtion not confirm

Analyzes of "No fix" values according to dependency on high ionosphere Day/night comparison

- Test assumption: lonosphere is during night lower!
- Q: Are "no fix" values from monitoring lower at nights?


		SKPOS ®	ASG. eupos		GNSSnet hu GNSS SZOLGÁLTATÓ KÖZPONT	SAPOS®)	RIGA EUP®S	
Number of values		751 139	310 745	92 238	726 643	20 522	23 879	1 925 166
Average value	ne	1.3	1.2	1.6	1.6	1.1	1.3	1.4
"day" →	u	2.4	1.3	1.3	1.4	1.4	1.9	1.6
Average value "night"	ne	0.9	0.7	1.2	1.0	0.7	0.8	0.9
	u	2.4	1.2	1.3	1.3	1.2	1.8	1.5
No fix "day"		19%	11%	20%	21%	14%	30%	19%rme ion confirmed 12%
No fix "night"		12%	6%	16%	12%	6%	20ssumt	12%

Analyzes of "No fix" values according to dependency on high ionosphere Control software day/night comparison

RTK network		SKPOS [®] SAPOS [®]	GNSS.net. hu GNSS.SzokGALTATÓ KÖZPONT RIGA FIGA FUED SS		
Software		Trimble Pivot Platform	Geo++ GNSMART	Leica Spider	
Number of value	es	1 082 406	116 117	92 238	
Average value	ne	1.2	1.5	1.6	
"day"	u	1.7	1.7	1.3	
Average value	ne	0.8	0.9	1.2	
"night"	u	1.6	1.6	1.3	1
No fix "day"		15%	26%	20%	afirmed.
No fix "night"	•	8%	16%	1.3 20% 16% mtion cot	

Analyzes of deviations according to testing points extrapolation

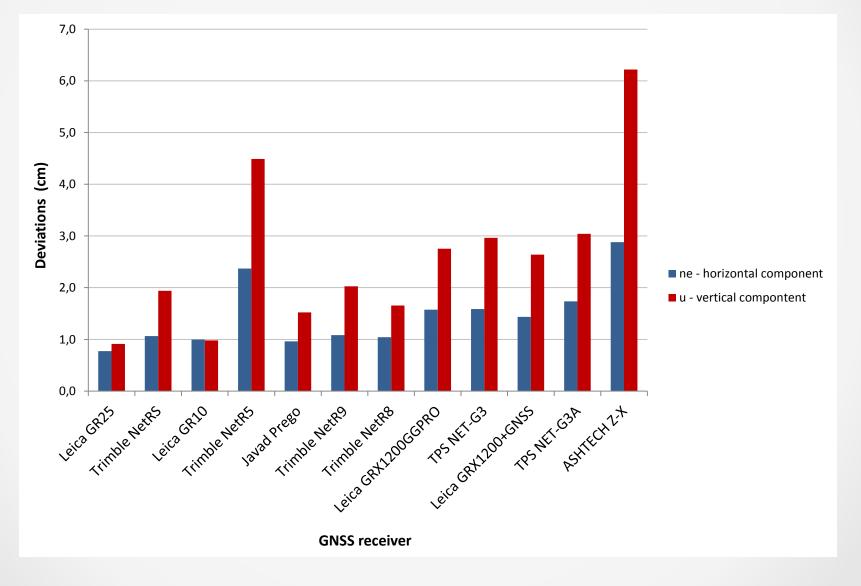
- RIGA-EUPOS = regional city network
- Only 5 reference stations
- Many testing points are extrapolated

Test points		Inside the network	Outside the network	
Aug 10 20	ne	1.0	1.1	
Average	u	1.8	1.9	
No fix		25%	25% Assumti	on not confirmed!

Analyzes of deviations according to GNSS receiver manufacturers

GNSS receiver manufacturers:

Trimble


Topcon

Astech

Javad

Leica

Analyzes of deviations according to brand of receiver

Analyzes of horizontal deviations according to position

Horizontal deviation (cm)

- $\begin{array}{c} \bigstar & 0,0 1,0 \\ \bigstar & 1,0 1,5 \end{array}$
- ★ 1,5 2,0
- ★ 2,0 2,5
- ★ 2,5 7,0

Summary and conclusions

- EUPOS network RTK quality monitoring tool is working right and the results is available here <u>http://monitoringEUPOS.gku.sk</u>
- results from the monitoring confirm "cm" quality of EUPOS countries network RTK
- performed analysis confirm:
 - "no fix" values dependency on high ionosphere
- and analysis do not confirm deviations dependency on:
 - GNSS service provider control software
 - reference stations density
 - brand of receiver
 - position
- we plan to continue our activity and analysis to confirm presented results

Thank you for your attention

Karol Smolík

Geodetic and Cartographic Institute BRATISLAVA

karol.smolik@skgeodesy.sk