The Stage and Future Plans in Development of Slovak Permanent GNSS Service

Matej Klobušiak Katarína Leitmannová Dušan Ferianc Štefan Priam

Geodetic and Cartographic Institute Bratislava Slovakia

> Multi-functional GNSS, Berlin, 4 – 5 March 2002

SLOVAKIA

Capital Bratislava Area 49 034 sq.km Population 5,4 mil Territrory is divided into : 8 regions, 79 districts, 2 834 municipalities,

3 524 cadastral areas

Authorized land surveyors 600, GPS receivers 150

How is surveying organised in Slovakia

state sector

commercial sector

Geodesy, Cartography and Cadastre Authority

Chamber of Surveyors and Cartographers

Geodetic and Cartographic Institute

Research Institute of Geodesy and Cartography

- Cadastral Institute

Cadastral Offices

Ministry of Defence

Topographic Institute of Slovak Army

Binding geodetic reference systems

• *since 1927*

- 2D co-ordinate system of Unified Trigonometric Cadastral Network (S – JTSK)
- 1D vertical reference system of normal heights

• *since 1996*

3D – European Terrestrial Reference System ETRS89
 NSN – National Spatial Network
 (3 – SPOS, 45 – SEOS, 1586 - other points)

Slovak permanent GNSS service for connection of new geodetic control to GGOS

@UGKKSR 1996 - 2002, SVM50

Design from SVM50 by GCI Bratislava (Ofúkaný 2002)

Modra Piesok

 $X = 4053738,206 \text{ m} \pm 2 \text{ mm}$ $Y = 1260571,381 \text{ m} \pm 1 \text{ mm}$ $Z = 4744940,656 \text{ m} \pm 3 \text{ mm}$

In selecting a site of the monumentation of a point a geologist was co-operate with. Primarily surface rock was selected, with continuously merges into the bedrock so as only tectonic movements be manifested

on it.

 $B = 48 22 21,81459 \pm 1,0$ -mm $L = 17 16 25,95622 \pm 1,1$ mmH = 578,978 m $\pm 3,0$ mm

 $v(B) = 2,3 \pm 0,3 \text{ mm/year}$ $v(L) = -0.1 \pm 0.2 \text{ mm/year}$

 $(H) = -0.1 \pm 1.2 \text{ mm/year}$

Banská Bystrica (BBYS)

X = 3980358,919 mY = 1382292,014 mZ = 4772771,890 m

B = 48 45 06,482757	± 2,1 mm
L = 19 09 03,604789	± 2,3 mm
H = 487,414 m	± 6,7 mm

 $v(B) = 20,1 \pm 1,1 \text{ mm/year}$ $v(L) = 19.6 \pm 2.2 \text{ mm/year}$ $v(H) = -7.8 \pm 6.5 \text{ mm/year}$

Rafter into the badrock

Gánovce (GANO) In selecting a site of the monumentation of a point a

hydrometeorologist and other field of the science of the Earth was co-operate with.

Slovak Geodynamic Reference Network (SGRN = SPOS + SEOS)

@UGKK SR 1996 - 2002, SVM50

Design from SVM50 by GCI Bratislava (Ofúkaný 2002)

SEOS includes 45 points with forced centering modul

National Spatial Network (NSN)

@ UGKK SR 1996 - 2002, SVM50

Design from SVM50 by GCI Bratislava (Ofúkaný 2002)

NSN - National Spatial Network new geodetic control of Slovakia in ETRS89 and other activities

campaigns	year	amount
Slovak Geodynamic Reference Network	1993- 2001	17 / 48
National Astronometric and Geodetic Network	1996	29
National Trigonometric Network of I order	1997	30
selected control triangulation points	1999	229
building up NSN west part of Slovakia	2000	311
building up NSN east part of Slovakia	2001	425
building up NSN middle part of Slovakia	2002	about 850

Relationship between ETRS 89 and S-JTSK

Base functional relations of the reference systems

S-JTSK ----> ETRS89

 $P_{JTSK}[x, y] \frac{3}{4^{8}} \frac{8}{4^{8}} \frac{8}{4^{8}} \frac{8}{4^{8}} P_{E_{2}}[B, L] \frac{3}{4^{8}} \frac{4^{8}}{4^{8}} \frac{8}{4^{8}} P_{E_{1}}[B, L] \frac{3}{4^{8}} \frac{8}{4^{8}} \frac$

 $ETRS89 \longrightarrow S-JTSK$ $P_{ETRS 89}[X,Y,Z] \equiv P_T[B,L,H] \xrightarrow{f(E_1,T)} P_Q[B,L,H-h_P(T)] \xrightarrow{f(E_1,Q)} *$ $* P_{E_1}[B,L,H-(h_P(T)+h_P(Q))=0] \xrightarrow{f^{-1}(E_1,E_2)} P_{E_2}[B,L] *$ $* \xrightarrow{f^{-1}(R_{JTSK},E_2)} P_{JTSK}[x,y,h_P(T),h_P(Q)],$

Reversible transformation of S-JTSK into ETRS89

A – *deformed JTSK* into non-deformed ETRS89
B – non-deformed ETRS89 into *deformed JTSK*C - non-deformed ETRS89 into non-deformed JTSK/02
D - non-deformed JTSK/02 into non-deformed ETRS89

Conclusion

New co-ordinate system – ETRS 89 New vertical system – EVRS 2000 For : Geodynamic, GIS , cadaster, other

Thank You for Your attention